Wavelet Galerkin Solutions of Ordinary Differential Equations
نویسنده
چکیده
Abstract. Advantage of wavelet Galerkin method over finite difference or element method has led to tremendous applications in science and engineering. In recent years there has been increasing attempt to find solutions of differential equations using wavelet techniques. In this paper, we elaborate the wavelet techniques and apply Galerkin procedure to analyse one dimensional harmonic wave equation as a test problem using fictitious boundary approach; overcoming Dianfeng et al. (1996) reservation at higher resolution. This could have been possible only after evaluating connection coefficients at various scales.
منابع مشابه
Existence of solution and solving the integro-differential equations system by the multi-wavelet Petrov-Galerkin method
In this paper, we discuss about existence of solution for integro-differential system and then we solve it by using the Petrov-Galerkin method. In the Petrov-Galerkin method choosing the trial and test space is important, so we use Alpert multi-wavelet as basis functions for these spaces. Orthonormality is one of the properties of Alpert multi-wavelet which helps us to reduce computations in ...
متن کاملA Wavelet Method for Solving Nonlinear Time-Dependent Partial Differential Equations
A wavelet method is proposed for solving a class of nonlinear timedependent partial differential equations. Following this method, the nonlinear equations are first transformed into a system of ordinary differential equations by using the modified wavelet Galerkin method recently developed by the authors. Then, the classical fourth-order explicit Runge-Kutta method is employed to solve the resu...
متن کاملThe Legendre Wavelet Method for Solving Singular Integro-differential Equations
In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.
متن کاملNumerical inversion of Laplace transform via wavelet in ordinary differential equations
This paper presents a rational Haar wavelet operational method for solving the inverse Laplace transform problem and improves inherent errors from irrational Haar wavelet. The approach is thus straightforward, rather simple and suitable for computer programming. We define that $P$ is the operational matrix for integration of the orthogonal Haar wavelet. Simultaneously, simplify the formulaes of...
متن کاملGalerkin Based Wavelet Methods for Solutions of Differential Equations
Solutions of numerical differential equations based on orthogonal functions is a quite classical (old) method. Also wavelets being orthogonal functions have been applied to such problems. In recent years there has been increasing attempt to find solutions of differential equations using wavelet techniques. In this chapter, we elaborate various waveletGalerkin methods such as Amaratunga et al. m...
متن کامل